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Abstract

Assume that we have two perspective images with known
intrinsic parameters except for an unknown common focal
length. It is a minimally constrained problem to find the
relative orientation between the two images given six cor-
responding points. We present an efficient solution to the
problem and show that there are 15 solutions in general
(including complex solutions). To the best of our knowledge
this was a previously unsolved problem.

The solutions are found through eigen-decomposition of
a 15 × 15 matrix. The matrix itself is generated in closed
form. We demonstrate through practical experiments that
the algorithm is correct and numerically stable.

1 Introduction

The task of computing a 3D reconstruction from a video se-
quence is central in computer vision. Different paradigms
have been proposed for performing this task and the concept
of RANSAC has been quite successful [5]. State-of-the-
art in real-time structure from motion uses the five point
method, e.g., [8], as a RANSAC engine. While this has
proved to be efficient and stable, the cameras need to be
pre-calibrated. For uncalibrated cameras, the seven-point
method can be applied, e.g., [15], but it is not as stable as
the five-point method. We offer an attractive compromise
having similar performance characteristics as the five point
method and still allowing for unknown focal lengths. By as-
suming constant and unknown focal lengths, but otherwise
known intrinsics, a minimal problem arises for six points.
A detailed analysis of this case is given, showing the num-
ber of possible solutions, efficient ways to compute them
and the stability of the solution with respect to measurement
noise.

Minimal case solvers exist for several camera models.
The problem for two calibrated cameras and five points was
first solved by Kruppa [7] who claimed that there are at most
11 solutions and the false root was then eliminated by [4].
A practical solution was given in [10] and improved in [8].
For three views and four points, the problem is not minimal
but as it would be under-constrained with three points, the

Figure 1: The problem solved here: Relative orientation for
2 cameras with a common, but unknown, focal length f that
see 6 unknown points.

problem is still of interest and was solved in [9].
Given that the epipolar geometry has been computed in

terms of the fundamental matrix, it is well known that it
is possible to recover the focal length [5, 14]. However,
to the best of our knowledge the relative pose problem for
minimal data is still unsolved. Here we present a solver for
two cameras and six points. The solver constructs a 15 ×
15 matrix in closed form. Solving the eigen-problem for
this matrix gives the 15 (possibly complex) solutions to the
relative pose problem. More information on how to build
minimal case solvers by studying an an analogouos problem
over Zp can be found in [13].

We will first list the minimal cases for cameras with a
common unknown focal length. Then the equations used
will be introduced. The solver was found using Gröbner
basis theory but this theory is not necessary to understand
the solver. We will also give some numerical results.

2 Background

Suppose we are given m cameras, all calibrated except for a
common unknown focal length and n corresponding image
points. There are 6m+3n+1−7 degrees of freedom (6 for
each camera, 3 for each point, 1 for focal length and 7 for
the unknown coordinate system) and 2mn equations, hence



n
m 1 2 3 4 5 6 7
1 -1 -2 -3 -4 -5 -6 -7
2 -5 -4 -3 -2 -1 0 1
3 -9 -6 -3 0 3 6 9
4 -13 -8 -3 2 7 12 17

Table 1: Number of excess constraints for m views and n
points with unknown focal length f .

in total, there are 2mn + 6 − 6m − 3n excess constraints
(Table 1). The minimal case (m,n) = (2, 6) will be solved
here. The other possibility (m,n) = (3, 4) is still unsolved.

Geometric Constraints

The fundamental matrix F encodes the epipolar geometry
of two views, and corresponding image points x and x′ sat-
isfy the coplanarity constraint

x′�Fx = 0. (1)

Any rank-2 matrix is a possible fundamental matrix, i.e.
we have the well known single cubic constraint, e.g. [5]:

Theorem 1 A fundamental matrix F satisfies

det(F ) = 0. (2)

An essential matrix has the additional property that the two
non-zero singular values are equal. This leads to the follow-
ing cubic constraints on the essential matrix, adapted from
[10]:

Theorem 2 A real non-zero 3 × 3 matrix E is an essential
matrix if and only if it satisfies the equation

2EE�E − tr(EE�)E = 0. (3)

This constraint previously appeared in [12, 3].

2.1 Gröbner Bases

The ideal generated by polynomials f1, . . . , fn ∈
C[x1, . . . , xn] is the set I of polynomials g ∈ C[x1, . . . , xn]
of the form:

g =
n∑

i=1

fipi, pi ∈ C[x1, . . . , xn]. (4)

We also say that the fi generate the ideal I . A Gröbner
basis of an ideal is a special set of generators, with the
property that the leading term of every ideal element is di-
visible by the leading term of a generator. The notion of

leading term is defined relative to a monomial order. The
Gröbner basis exposes all leading terms of the ideal and
leads to the useful notion of remainder with respect to (di-
vision by) the ideal. Gaussian elimination is a special case
of Buchberger’s algorithm which is a method for calculat-
ing a Gröbner basis from any generating set. Gröbner bases,
monomial orders and Buchberger’s algorithm are explained
in [1]. For ideals having a finite set of solutions (“zero-
dimensional” ideals) the (vector space) dimension of the
quotient ring A = C[x1, . . . , xn]/I is also finite and the di-
mension equals the number of solutions, counted with mul-
tiplicity. Any polynomial f acts on the quotient ring A by
multiplication (f : g + I �→ fg + I) and this is clearly a
linear mapping from A to itself. A natural way to choose a
(vector space) basis for A is to take all monomials that are
not leading terms of any element of I . The action of a poly-
nomial f is then described by a square matrix mf called the
action matrix.

The solutions to a zero-dimensional ideal can be read off
directly from the eigen-values and eigen-vectors of appro-
priate action matrices [2].

3 Solution Procedure for (2, 6)

The inner calibration of the camera is assumed to be

K =




f 0 0
0 f 0
0 0 1


 .

With observations {xi}6
i=1 in the first image and {x′

i}6
i=1

in the second image the epipolar constraint (1) gives six lin-
ear constraints on the fundamental matrix F ,

xi
T Fx′

i = 0 , ∀i = 1, . . . , 6. (5)

As a 3 × 3 matrix has 9 degrees of freedom this determines
F up to 3 degrees of freedom, F = l0F0 + l1F1 + l2F2

for some scalars l0, l1, l2. The fundamental matrix F can
be computed only up to scale so we set l0 = 1.

The fundamental matrix F must fulfill (1), that is,
det(F ) = det(F0 + F1l1 + F2l2) = 0, which is a third
order polynomial equation in (l1, l2).

The matrix F can be transformed into an essential matrix
by correcting for the intrinsic calibration,

E = K�FK.

Set

P = f−1K =




1 0 0
0 1 0
0 0 f−1


 (6)
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Figure 2: Order of monomials and shifts for multiplication
by p. Since the arrows cross this is not a monomial order.
The rows are powers of l1,l2 and p. The columns are in the
order of the monomials.

then Equation (2) is equivalent to

2PFPPFT PPFP − tr(PFPPFT P )PFP = 0 (7)

⇔ 2FPPFT PPF − tr(PFPPFT P )F = 0 (8)

⇔ 2FP 2FT P 2F − tr(FP 2FT P 2)F = 0. (9)

Notice that f−1 only appears in even powers in the above
set of polynomial equations and hence one can set p = f−2.
This is a set of nine fifth order equations in (l1, l2, p).

The ten equations, (2) and (9), can be written AX = 0,
where A is a 10 × 33 matrix of scalars and X is a vector of
monomials

X=[l31p
2, l31p

1, l31, l
2
1l

1
2p

2, l11l
2
2p

2, l32p
2, l21l

1
2p

1,

l11l
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1
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1
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3,

l11l
2
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3
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2
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1, l12p
3, l11l

1
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1, l22p
1, l11p

2, l12p
2,

p3, l21, l
1
1l

1
2, l

2
2, l

1
1p

1, l12p
1, p2, l11, l

1
2, p

1, 1]T . (10)

This ordering of the monomials is not a monomial order
but it is quite close to the GrevLex monomial order. The
reason for not ordering the monomials in GrevLex is that
the computations are easier to implement this way. The
computed Gröbner basis is the same as we would get using
GrevLex. The elimination order is still the one belonging
to the GrevLex order. In Figure 2 the order is shown in a
way that may be easier to read. The shifts used to perform
multiplication by p are also shown.

From this point on all polynomials will be represented
by rows in n×33 matrices. Addition of polynomials is now
addition of rows. Multiplying a polynomial with a scalar
α corresponds to multiplying the corresponding row with
α. Multiplying a polynomial with the monomial p is im-
plemented by shifting elements according to Figure 2. If
any non-zero number is in a position that is not shifted it
means that multiplication with p was impossible for this
vector within this representation. By writing pMi we mean
the polynomial represented by row i in M multiplied by the
monomial p. Row indexing starts at 1.

The rows representing p det(F ) and p2 det(F ) are added
to the matrix A , or in matrix formulation pM10 and p2M10.
This system of 12 rows is seen in Figure 3. This system

is reduced using Gauss-Jordan elimination and the rows
pM(7,8,9,10) are added. This new system is seen in Figure
4. Again, the system is reduced and the rows pM(8,9) are
added. This new system is seen in Figure 5. The system
is reduced one last time, and the system now represents a
Gröbner basis. This system is seen in Figure 6.

Given the Gröbner basis from the previous step it is now
possible to compute the action matrix ml2 , see [2], for mul-
tiplication by l2 by taking the last 15 columns from rows
8,9,11,13,18,10,15 and 16 and changing the sign and then
putting ones in selected places, as described in Figure 7.

Dividing each of the 15 eigen-vectors of the transposed
action matrix (we are interested in the right eigen-space)
by its last element and then selecting elements 12,13 and
14 gives the solutions for (l1, l2, p). As there are 15 eigen-
vectors there are 15 solutions. The fundamental matrices
are then given by F = F0 + F1l1 + F2l2, as f−2 = p is
known, the essential matrix can be computed and from the
essential matrix the motion (R, t) can be computed.

4 Numerical Precision of the Solver

Figure 8 shows the behavior for random image points.
There are two critical configurations [14, 6] for determin-
ing f from the fundamental matrix F :

• The main axes of the cameras intersect and both cam-
eras have the same distance to the intersection point.
Figure 10 shows that even if it is impossible to estimate
f it is still possible to estimate F . Figure 9 shows that
if the distances from the cameras to the intersection
point are not equal then f can be estimated.

• The main axes of the cameras are parallel. Figure 11
shows that even if f is not recovered it is possible to
compute F .

It also important to note that planar scenes are degenerate.
This is shown in Figure 12.

5 Stability of the Solution Compared
to Other Methods

The solver will be compared with other solvers of interest:

• 5 point method as described in [8]. This solver gives
10 solutions.

• 6 point calibrated method by Pizarro described in [11].
This solver gives 6 solutions.

• 7 point method. No assumption on calibration. This
gives 3 solutions.
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Figure 3: 9 equations from Equation 3 and det(F ),
p det(F ) and p2 det(F ).
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Figure 4: The previous system after a Gauss-Jordan step
and adding new equations based on multiples of the previ-
ous equations.
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Figure 5: The previous system after a Gauss-Jordan step
and adding new equations based on multiples of the previ-
ous equations.
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Figure 6: Gauss-Jordan eliminated version of the previous
system. This set of equations is a Gröbner basis.
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Figure 7: Transpose of the Action-Matrix. Rows 1 to 8
are fetched from the previous matrix and rows 9 to 15 each
contains a 1 and the other elements are 0.

A synthetic scene was set up consisting of

• Camera 1 at the origin pointing along the z-axis.

• Camera 2 in a random point 1 unit away from camera 1
and rotated with a random rotation with a mean angle
of 5.5o.

• Scene-points, random points centered on the point[
0 0 3

]
with a Gaussian distribution with standard

deviation 1 along each of the axes.

The added noise was calculated for a 1000 × 1000 camera
with a field of view of 40o and has a normal distribution
with standard deviation in pixels given on the horizontal
axes of the plots.

The error in the fundamental matrix is computed as
mini ‖F ± F̃i‖ where F is the true fundamental matrix and
{F̃i} are the estimated fundamental matrices, all being nor-
malized with Frobenius norm 1.

With the correct value for the focal length f our method
beats the 7-point method and the 6-point method of Pizarro
but the five-point method is the best, see Figure 13. hen
constructing test scenes with focal length f �= 1, the five-
point-method and the method of Pizarro run into trouble as
they assume that f = 1. This is shown in Figures 14 and
15.

There are generally 15 solutions to the problem but some
of these solutions can be complex or lead to complex f .
In Figure 16 are shown the number of real solutions to the
eigen-value problem. Figure 16 shows the number of solu-
tions that have a positive f2 , which means that it will be
possible to compute a positive and real focal length.
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Figure 8: log10 of error in determining f2 and F for perfect
data.
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Figure 9: log10 of error in determining f2 and F for perfect
data when the axis intersect.
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Figure 10: log10 of error in determining f2 and F . The
main axes of the cameras intersect and they have the same
distance from principal point to intersection point (some
noise added for stability).
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Figure 11: log10 of error in determining f2 and F . The
main axes of the cameras are parallel (some noise added for
stability).
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Figure 12: log10 of error in determining f2 and F . All
points on a plane.
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Figure 13: log10 of error in determining the fundamental
matrix. Assuming correct calibration. Noise in pixels.
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Figure 14: log10 of error in determining the fundamental
matrix. Data was generated for f = 1.01 but the solutions
were computed assuming f = 1. Note that for noise smaller
than 0.5 our method is better than the five-point.
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Figure 15: log10 of error in determining the fundamental
matrix. Data was generated for f = 1.1 but the solutions
were computed assuming f = 1.
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Figure 16: Left: The number of real solutions for f2.
Right:The number of positive f2 leading to real f .

6 Implementation and Speed

Apart from computing the solutions to the eigen-problem,
all the steps are in closed form and can be heavily opti-
mized. For a fully optimized version the eigen-problem is
likely to be the bottleneck.

Our current implementation -which is not optimized for
speed - runs at 1000 Hz. One implementation is available
from [16].

7 Conclusions

We have presented a solution to the minimal problem of
six points in two views with unknown focal length. Using
Gröbner basis techniques we show how the problem can be
solved in an efficient manner, making it an attractive solu-
tion for semi-calibrated structure and motion computations.
We have also shown that the method gives surprisingly good
stability under noise, competitive even with the five point
method and more stable than the seven point method.

Acknowledgements

Research support from the Swedish Research Council and
U.C. MICRO Program is gratefully acknowledged.

References

[1] D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algo-
rithms, ISBN 0-387-94680-2, Springer-Verlag, 1997.

[2] D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry,
ISBN 0-387-98492-5, Springer-Verlag, 1998.

[3] M. Demazure, Sur Deux Problemes de Reconstruction, Tech-
nical Report No 882, INRIA, Rocquencourt, France, 1988.

[4] O. Faugeras and S. Maybank, Motion from Point Matches:
Multiplicity of Solutions, International Journal of Computer
Vision, 4(3):225-246, 1990.

[5] R. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, ISBN 0-521-62304-9, Cambridge Univer-
sity Press, 2000.

[6] F. Kahl and B. Triggs, Critical Motions in Euclidean Struc-
ture from Motion, IEEE International Conference on Com-
puter Vision and Pattern Recognition, Volume 2, pp. 366–372,
1999.

[7] E. Kruppa, Zur Ermittlung eines Objektes aus zwei Perspek-
tiven mit Innerer Orientierung, Sitz.-Ber. Akad. Wiss., Wien,
Math. Naturw. Kl., Abt. IIa., 122:1939-1948, 1913.

[8] D. Nistér, An Efficient Solution to the Five-Point Relative
Pose Problem, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(6):756-770, 2004.

[9] D. Nistér and F. Schaffalitzky, What do four points in two
calibrated images tell us about the epipoles? Proceedings of
the 8th European Conference on Computer Vision, Volume 2,
pp. 41–57, 2004.

[10] J. Philip, A Non-Iterative Algorithm for Determining all
Essential Matrices Corresponding to Five Point Pairs, Pho-
togrammetric Record, 15(88):589-599, October 1996.

[11] O. Pizarro, R. Eustice and H. Singh, Relative Pose Estima-
tion for Instrumented, Calibrated Platforms, VIIth Digital Im-
age Computing: Techniques and Applications, pp. 601–612,
2003.

[12] P. Stefanovic, Relative Orientation - a New Approach, I. T.
C. Journal, 3:417-448, 1973.
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