
Kernel Pooling for Convolutional Neural Networks

Yin Cui1,2∗ Feng Zhou3 Jiang Wang4 Xiao Liu3 Yuanqing Lin3 Serge Belongie1,2
1Department of Computer Science, Cornell University 2Cornell Tech

3Baidu Research 4Google Research
{ycui, sjb}@cs.cornell.edu www.f-zhou.com

wangjiangb@gmail.com {liuxiao12,linyuanqing}@baidu.com

Abstract

Convolutional Neural Networks (CNNs) with Bilinear
Pooling, initially in their full form and later using compact
representations, have yielded impressive performance gains
on a wide range of visual tasks, including fine-grained vi-
sual categorization, visual question answering, face recog-
nition, and description of texture and style. The key to their
success lies in the spatially invariant modeling of pairwise
(2nd order) feature interactions. In this work, we propose
a general pooling framework that captures higher order in-
teractions of features in the form of kernels. We demon-
strate how to approximate kernels such as Gaussian RBF
up to a given order using compact explicit feature maps in
a parameter-free manner. Combined with CNNs, the com-
position of the kernel can be learned from data in an end-
to-end fashion via error back-propagation. The proposed
kernel pooling scheme is evaluated in terms of both kernel
approximation error and visual recognition accuracy. Ex-
perimental evaluations demonstrate state-of-the-art perfor-
mance on commonly used fine-grained recognition datasets.

1. Introduction

The idea of interactions between features has been used
extensively as a higher order representation in learning tasks
recently [24, 34, 3, 23]. The motivation behind is to make
the subsequent linear classifier operates on higher dimen-
sional feature map so that it becomes more discriminative.
There are two ways in general to create higher order inter-
actions. The most commonly used one is to implicitly map
the feature via the kernel trick, like in the case of kernel
SVM [41]. The disadvantages are twofold. The storage
needed and the evaluation time are both proportional to the
number of training data, which makes it inefficient on large
datasets. In addition, the construction of the kernel makes it

∗Part of this work was done during the internship at Baidu Research.

original feature vector

2nd order1st order 3rd order pth orderconst.

differentiable compact explicit
feature map approximation

Legend

element-wise
multiplication

Count Sketch

Fast Fourier
Transform

Inverse Fast
Fourier

Transform

Figure 1. The proposed Kernel Pooling method. For a feature vec-
tor (i.e., the activation at a spatial location on the feature map, in
the case of a CNN), we use Count Sketch [6] to generate a compact
explicit feature map up to pth order. After applying kernel pool-
ing, the inner product between two features can capture high order
feature interactions as in Eqn. 1. This makes the subsequent lin-
ear classifier highly discriminative. The proposed kernel pooling
scheme is end-to-end trainable and the composition of the kernel
can be learned through the update of coefficients {αi}pi=0. The
vanilla compact bilinear pooling [11, 10] only use the 2nd order
information as the feature vector.

hard to use stochastic learning methods, including Stochas-
tic Gradient Descent (SGD) in the training of CNNs. The
other way is to explicitly map the feature vector into high
dimensional space with products of features (monomials).
The drawback of this method is obvious. If we want up to
pth order interactions on a d dimensional feature vector, the
dimension of the explicit feature map will be O(dp), which
makes it impractical to use in real world applications. A
common way to address these issues is to compactly ap-
proximate either kernel functions [37, 44] or feature maps
[17, 31, 2].

Before the remarkable success of using Convolutional
Neural Networks (CNNs) on visual data [20, 38, 39, 15],
low-level hand-crafted features (e.g., SIFT [25], HOG [8],

1

Figure 2. End-to-end training with the proposed pooling method. An input image is fed into a series of fully convolutional layers to get
the output feature map of sizeh � w � c. For thec dimensional feature vector on every single spatial location (e.g., the red or blue bar
on the feature map), we apply the proposed kernel pooling method illustrated in Fig. 1. The �nal feature vector is average pooled over all
locationsh � w. Then a linear layer with softmax is used to do the classi�cation. The kernel is de�ned by the orderp and coef�cients
f � i g

p
i =0 , which can be learned from data through back-propagation.

Gist [28]) combined with mid-level feature aggregation or
pooling methods (e.g., Bag-of-visual-words, Spatial Pyra-
mid Matching [21], Sparse Coding [45], Fisher Vector [30])
were widely adopted as the standard scheme for feature ex-
traction. When learning and applying the subsequent lin-
ear classi�er on extracted features, kernel methods such as
Gaussian RBF or exponential� 2 kernel are often adopted
to capture higher order information and make linear clas-
si�er more discriminative. Recently, efforts in combining
CNNs with 2nd order feature interactions, either by replac-
ing hand-crafted features with CNN features [7] or jointly
trained in an end-to-end fashion, yielded impressive perfor-
mance gains on a wide range of visual tasks. Representative
examples include �ne-grained visual recognition [23, 11],
visual question answering [10], texture representation and
synthesis [13, 22], face recognition [35] and style transfer
[12]. Notably, both Gaoet al. [11] and Fukuiet al. [10]
used Tensor Sketch [31] to compactly compress the full bi-
linear vector by 2 orders of magnitude while preserve the
same performance.

In this work, we propose a compact and differentiable
way to generate explicit feature maps. We generalize the
strategy used in [11, 10] to represent higher order feature
interactions. For a feature vectorx of dimensiond, we
generate itsi th order (i � 2) compact explicit feature map
with Count Sketch [6] and circular convolution. In prac-
tice, people often operate circular convolution in frequency
domain via Fast Fourier Transform (FFT) and Inverse Fast
Fourier Transform (IFFT). It has been proven, both theo-
retically and practically in [31], that this method is able to
compactly approximate polynomial kernels. As illustrated
in Fig. 1, with a stack of Count Sketch, element-wise mul-

tiplication, FFT and IFFT units, higher order information
can be compactly preserved. The kernel pooling method is
applied on every single spatial location on the feature map
of a CNN. And the �nal feature vector is the result of global
average pooling across all spatial locations.

Denote the proposed kernel pooling method as� . Then
for two feature vectorsx andy , the inner product between
� (x) and� (y) can approximate a kernel up to a certain or-
derp as follows (see Sec. 3 for more details):

� (x)> � (y) �
pX

i =0

� 2
i (x> y) i � K (x; y) (1)

Through the introduction of kernel functions associated
with Reproducing kernel Hilbert space, linear classi�ers op-
erate on high-dimensional Euclidean space become highly
discriminative. Combine the proposed pooling method with
a CNN, as shown in Fig. 2, the model can be trained end-
to-end via back-propagation of classi�cation errors. The
composition of the kernel, as determined by coef�cients
f � i g

p
i =0 , can be either prede�ned to approximate a certain

kernel like Gaussian RBF up to orderp or learned from data.

To sum up, there are two main contributions in this work.
Firstly, we propose a general kernel pooling method via
compact explicit feature mapping. Using the linear clas-
si�er on the feature map is approximately same as applying
the kernel trick. Secondly, the proposed kernel pooling is
differentiable and can be combined with a CNN for joint
optimization. The composition of the kernel can also be
learned simultaneously during the training.

2. Related Work

The proposed kernel pooling method relies on the exist-
ing efforts on low dimensional compact approximation of
explicit feature maps. Rahimiet al. [33] is one of the �rst
work on using random features for Gaussian and Laplacian
kernels. Later, the similar idea was generalized to other ker-
nels such as Majiet al. [26] for the histogram intersection
kernel and Vedaldiet al. [42] for � 2 kernel. On the compact
approximation of polynomial kernels, recent proposed Ran-
dom Maclaurin by Karet al. [17], Tensor Sketch by Pham
et al. [31] and Subspace Embedding by Avronet al. [2] are
the most noticeable representatives. There is also a line of
work that tries to learn higher order interactions from the
data through optimization [24, 34, 3]. We differ from these
work by the combination of Convolutional Neural Networks
(CNNs) in an end-to-end fashion. With the joint optimiza-
tion, we can leverage the powerful off-the-shelf fully con-
volutional network architectures to learn better features di-
rectly from data.

Since the dimension ofpth order pooled feature grows
exponentially withp, the use ofp > 2 in real world ap-
plications is often limited. In the case ofp = 2 , the
model is usually referred as Bilinear models, �rst intro-
duced by Tenenbaum and Freeman [40]. Bilinear mod-
els demonstrate impressive performance on visual tasks ap-
plied on both hand-crafted features [5] and learned fea-
tures [23, 35, 22, 12]. Recently, fueled by compact 2nd or-
der polynomial kernel approximation with Tensor Sketch
[6, 31], same visual recognition performances can be pre-
served with much lower feature dimension [11] and new
application on visual question answering is enabled [10].
We differ from these work by generalizing the compact rep-
resentation from Bilinear models with2nd order polynomial
kernel topth order Taylor series kernel de�ned in Sec. 3.
The composition of the kernel can also be learned through
the end-to-end training with a CNN (see Sec. 3.3).

3. Kernel Pooling

We de�ne the concept of “pooling” as the process of
encoding and aggregating feature maps into a global fea-
ture vector. The architecture of Convolutional Neural Net-
works (CNNs) can be regarded as fully convolutional lay-
ers followed by the subsequent pooling layers and a linear
classi�er. Tab. 1 summaries pooling strategies adopted in
commonly used CNN architectures. Typically people use
a stack of fully connected layer with Recti�ed Linear Unit
(ReLU) as in the case of AlexNet [20] and VGG [38]. Fully
connected layers often perform well in general but intro-
duce heavy computation and large number of parameters,
hence makes the network slow and easy to over�t. The re-
cently proposed Inception [39] and Residual Learning [15]
only use global average pooling on the feature map. This

Figure 3. An illustration of tensor product. Thep-level tensor
productx (p) of x 2 Rc is acp dimensional vector.

strategy is more computationally ef�cient but it does not
capture higher order feature interactions, which are believed
crucial in many visual recognition tasks [23, 35, 22]. The
bilinear models [5, 23] explicitly generate thec2 dimen-
sional feature map for 2nd order polynomial kernel, which
is later compactly approximated in [11, 10] using Tensor
Sketch [31]. In light of the success of Bilinear models, we
propose an approach to go beyond Bilinear models and cap-
ture higher order feature interactions. We �rst de�ne Tayler
series kernel and show its explicit feature map can be com-
pactly approximated. Then we demonstrate how to use the
compact feature projection of Taylor series kernel to ap-
proximate commonly used kernels such as Gaussian RBF.

3.1. Explicit feature projection via Tensor product

Suppose the output feature map of a convolution layer
is X 2 Rh� w � c with height h, width w and number of
channelsc, we denote thec dimensional feature vector of a
spatial location onX asx = [x1; x2; : : : ; xc]> 2 Rc.

The explicit feature projection� (:) of a kernel function
K(:; :) is de�ned by decomposing the the value of kernel
function applied on two feature vectorsx andy as the inner
product between their feature maps:

K(x; y) = � (x)> � (y) (2)

Commonly used kernel functions include polynomial ker-
nels(x> y)p, Gaussian RBF kernelexp(� kx � yk2), � 2

kernel
P c

i =1
2x i y i
x i + y i

, etc. Notice that some of the kernels
may correspond to an in�nite dimensional feature projec-
tion (e.g., Gaussian RBF).

We introduce the concept of Tensor product and then
demonstrate it can be used to get the explicit feature projec-
tion of a speci�c type of kernel calledTaylor series kernel.

First, we de�ne the2-level tensor product (i.e., outer
productxx >) of x as:

x (2) = x
 x =

2

6
6
6
4

x1x1 x1x2 � � � x1xc

x2x1 x2x2 � � � x2xc
...

...
...

...
xcx1 xcx2 � � � xcxc

3

7
7
7
5

2 Rc2
(3)

AlexNet / VGG Inception / ResNet Bilinear Compact Bilinear Ours

Strategy � (W2� (W1X)) 1
hw

P
i;j X ij

1
hw

P
i;j X ij X >

ij
1

hw

P
i;j TS(X ij) 1

hw

P
i;j � (X ij)

Dimension d c c2 d d
Time O(hwcd) O(hwc) O(hwc2) O(hw(c + d logd)) O(hwp(c + d logd))
Space O(hwcd) 0 0 2c pc

Parameters O(hwcd) 0 0 0 0 or p

Table 1. A summary of pooling strategies adopted in commonly used CNN architectures.X represent the feature map of sizeh � w � c,
whereh, w andc is the height, width and number of channels;d represents the pre-speci�ed feature dimension for the subsequent linear
classi�er andp is the order we used for the proposed kernel pooling.� (:), T S(:) and� (:) denotes the ReLU unit, Tensor Sketch [31] and
the proposed kernel pooling mehtod, respectively.

Similarly, thep-level tensor product forp � 2 is de�ned as:

x (p) = x
 � � �
| {z }
p times

x 2 Rcp
(4)

We also havex (0) = 1 andx (1) = x. Fig. 3 illustrates the
original feature vectorx and its2-level and3-level tensor
productx (2) andx (3) . It has been shown in [36] that thep-
level tensor product is the explicit feature projection ofpth

order Polynomial kernel:

(x> y)p = (x (p))> (y (p)) (5)

We de�ne the Taylor series kernel of orderp as follows:

KTaylor(x ; y) =
pX

i =0

� 2
i (x> y) i (6)

Since the non-negative linear combination of kernels is still
a kernel [36], the Taylor series kernel is a valid kernel as
it can be expressed as non-negative linear combinations of
Polynomial kernels.

It is clear to see that the explicit feature projection of
Taylor series kernel is given by:

� Taylor(x) = [� 0(x (0))> ; : : : ; � p(x (p))>]> (7)

Composed by the concatenation of scaled tensor products
f � i x (i) gp

i =0 , � (x)1 is a long feature vector with dimension
O(cp). Even in the case ofc = 512 andp = 3 , cp is still
larger than108. Such a high dimension hinders its appli-
cations in any real world problems. Therefore, a compact
approximation method is needed.

3.2. Compact approximation

The compact approximation method is differentiable and
has good time and space complexity. There are several re-
cently proposed work on kernel approximation with random
feature projections [33, 17, 31, 2]. We build our approxima-
tion method on Tensor Sketching [31], because it consumes
less time and space compared to [33, 17], and it is easier to
implement compared to [2].

1For simplicity, unless otherwise speci�ed, we will drop the subscript
of K Taylor and� Taylor in the remainder of the paper.

Algorithm 1: Count Sketch for Taylor series kernel

Input: x 2 Rc; p; f di g
p
i =2 ; f � i g

p
i =0

Output: � (x) 2 Rd, whered = 1 + c +
P p

i =2 di , s.t.
� (x)> � (y) � K (x; y) =

P p
i =0 � 2

i (x> y) i .
1 Initialization: � (x) [� 2

0; x>]> , P 1.
2 for t 1 to p do
3 Generate2 independent hash functionsht andst .

The outputs ofht andst are uniformly drawn
from f 1; 2; : : : ; dt g andf +1 ; � 1g, respectively.

4 Calculate the Count Sketch ofx asCt (x) =
[c1; c2; : : : ; cdt]

> ; whereci =
P

i :h t (i)= j st (i)x i .
5 P P � FFT(Ct (x))
6 if t � 2 then
7 � (x) concatenate (� (x); FFT� 1(P))

8 return � (x)

3.2.1 Taylor series kernel

To compactly approximate thep-level tensor product
x (p) , we de�ne the Count Sketch [6] ofx as:

C(x) = [c1; c2; : : : ; cd]> ; whereci =
X

i :h (i)= j

s(i)x i (8)

The Count SketchC(x) is a d-dimensional vector calcu-
lated using2 hash functionsh(:) and s(:). Their outputs
are uniformly drawn fromf 1; 2; : : : ; dg andf +1 ; � 1g, re-
spectively. Thep-level tensor productx (p) can then be ap-
proximated as:

~x (p) = FFT� 1(FFT(C1(x)) � � � � � FFT(Cp(x))) (9)

whereCi (x) is the Count Sketch calculated from2i inde-
pendent hash functionsh1; h2; : : : ; hi ands1; s2; : : : ; si , �
denotes the element-wise multiplication, FFT and FFT� 1 is
the Fast Fourier Transform and its Inverse.

Combining Eqn. 7 and Eqn. 9, the feature map of a Tay-
lor series kernel can be compactly approximated, as de-
scribed in Alg. 1. Inputs include the original feature vec-
tor x, the orderp of the Taylor series kernel to be approxi-
mated, target feature dimensionsdi (i � 2) we want to use

Figure 4. Approximating Gaussian RBF kernel by Taylor series
kernel with variantp. Without loss of generality, we ignore the
constant� when plotting. The approximation error depends on
the inner product valuex > y and . With the proper choice of
based onx > y , usingp = 4 would be suf�cient to approximate
Gaussian RBF.

for estimatingx (i) and its associated coef�cient� i . Com-
pared with the explicit feature map in Eqn. 7, we reduce
the feature dimension from exponential to linear. More
speci�cally, from

P p
i =0 ci to d = 1 + c +

P p
i =2 di , where

d � ci ; 8i � 2.

It has been proved that~x (p) in Eqn. 9 is an unbiased fea-
ture map estimator forpth order Polynomial kernel. The
relative estimation error can be bounded by Chebyshev's in-
equality (see Lemma 7 in [31] for the detailed proof). Sim-
ilarly, the estimation error of using Alg. 1 can be bounded
as:

P
h�
�
� � (x)> � (y) � K (x; y)

�
�
� � � K(x; y)

i
�

1
dmin � 2 �(p)

(10)
wheredmin = min(d2; : : : ; dp) and

�(p) =

(
2(p � 1); if C = � 1
2C 2 (C 2p � 1)

C 2 � 1 ; otherwise

C = 1
cos � is a constant that equals to the reciprocal of the

cosine similarity between two feature vectorsx andy . In
our experience, we �nd higher dimensional feature (large
dmin) gives better approximation, kernels with largerp in-
troduce larger error, and the error bound also depends heav-
ily on the angle between two feature vectors.

Figure 5. Learning kernel composition by end-to-end training with
a CNN. The coef�cients of the kernel are jointly learned together
with weights of other CNN layers via back-propagation of the loss
(denoted by outgoing arrows from “Loss”).

3.2.2 Gaussian RBF kernel

The Taylor expansion of Gaussian RBF kernel [32] can
be expressed as:

KRBF (x ; y) = exp
�

� kx � yk2�

= exp
�

� (kxk2 + kyk2 � 2x> y)
�

= � exp
�
2 x> y

�

=
1X

i =0

�
(2) i

i !
(x> y) i (11)

where� = exp
�

� (kxk2 + kyk2)
�

is a constant and
� = exp(� 2) if x andy are`2-normalized. Compared
with Taylor series kernel in Eqn. 6, it is clear that Taylor se-
ries kernel can be used to approximate Gaussian RBF term
by term up to orderp by setting� 2

i as� (2) i

i ! . Other ker-
nels can also be approximated if they have a Taylor expan-
sion in the similar form. Fig. 4 illustrates the approxima-
tion of Gaussian RBF by Taylor series kernel with variant
p. The approximation error depends on the inner product
value x> y . In general, the closer the value is to 0, the
smaller the approximation error. So we need to choose
carefully based onx> y . With the proper choice of , using
p = 4 would be suf�cient to approximate Gaussian RBF.
Experiments on kernel approximation error and the effect
of will be discussed extensively in Sec. 4.2.

3.3. Learning kernel composition endtoend

The proposed kernel pooling method in Alg. 1 relies
on simple computations with a set of �xed hash functions
f ht g andf st g, FFT and FFT� 1, which are all differentiable.
Combined with a CNN, the loss from the softmax layer can
go through the proposed kernel pooling layer and be propa-
gated back to the preceding fully convolution layers.

Instead of using �xed pre-de�ned coef�cients to approx-
imate a certain kernel such as Gaussian RBF, the compo-
sition of the kernel can be learned from data, as illustrated
in Fig. 5. Designing and choosing a good kernel is a chal-
lenging task because it is hard to probe the underlying dis-
tribution of high-dimensional features. Therefore, a ker-
nel function is often chosen empirically or through cross-
validation. By jointly learning the kernel composition to-
gether with CNN weights in an end-to-end fashion, we ar-
gue the learned kernel is more adaptive and suitable to the
data we are working on.

4. Experimental Evaluations

The proposed kernel pooling method is evaluated in
terms of both kernel approximation error and visual recog-
nition accuracy. Sec. 4.1 introduces experiment setup and
baseline methods. Then, in Sec. 4.2, we run a comprehen-
sive study of kernel approximation quality on CNN fea-
tures. We also investigate the con�guration such as the
choice of feature dimension�d, kernel orderp and . Sec.
4.3 is the major part of the experiment, in which we present
extensive evaluations on various visual recognition tasks,
including the recognition of bird [43], car [19], aircraft [27]
and food [4]. The proposed kernel pooling method achieves
state-of-the-art results on all datasets.

4.1. Experiment setup

We evaluate all pooling strategies listed in Tab. 1. For
CNN architectures, we use VGG-16 [38] and ResNet-50
[15], both of which achieved state-of-the-art performance
on ImageNet [9]. VGG-16 has13 convolution with ReLU
layers and3 fully connected layers including the �nal linear
layer with softmax for classi�cation. ResNet-50 consists of
49 convolution layers followed by global average pooling
and the �nal linear softmax layer. Both VGG and ResNet
reduce the spatial resolution of the input image by a factor
of 25 = 32 during the convolution. In the case of Bilinear,
Compact Bilinear and our model, we keep the fully convo-
lutional part of the network and use the output feature map
from the last convolution layer (i.e., the feature vectorx in
Alg. 1 corresponds to the activation at each spatial location
of last layer's feature map). For standard pooling methods,
we choose VGG-16 and ResNet-50 [15] as representatives
for fully connected pooling and global average pooling, re-
spectively. The performance of VGG-16 and ResNet-50 is
reported by �ne-tuning the entire network from ImageNet
pre-trained weights.

4.1.1 Pooling methods

We compare the performance of kernel pooling methods
with the following baselines:

VGG with fully connected pooling (VGG): This is the
original VGG-16 network proposed in [38]. The architec-
ture of VGG-16 is a generalization of the ground-breaking
AlexNet [20]. In AlexNet, only one convolution layer is ap-
plied to the input image and the feature map of a speci�c
spatial resolution. In VGG, however, more convolution lay-
ers (2 to 3) are applied for each spatial resolution, which
achieved state-of-the-art performance on ImageNet Chal-
lenge 2014. Both AlexNet and VGG use the same fully
connected pooling scheme (a stack of two fully connected
with ReLU layers) for the subsequent softmax layer. Due
to the �xed number of nodes designed in fully connected
layers, VGG requires a �xed input image size of224� 224.
For each of the dataset, we replace the last linear layer of
VGG to match the number of categories and then �ne-tune
the whole network from ImageNet pre-trained weights.

Residual Learning with average pooling (ResNet): Al-
though the fully connected layer works well in practice, it
has several drawbacks including the heavy computation and
large storage needed as well as the tend to over�t. Recently
proposed deeper networks based on Inception module [39]
and Residual module [15] use global average pooling after
convolution layers for the subsequent linear classi�er. The
global average pooling is lightweight, capable of taking in-
put of any size and parameter-free. However, it fails to cap-
ture nonlinear information in feature maps. We choose a
strong baseline of �ne-tuned ResNet as comparison.

Bilinear Pooling (BP): We apply full bilinear pooling on
top of the conv5 3 feature map from VGG-16, which is same
as the best-performed B-CNN [D, D] in [23]. The feature
dimension of the bilinear vector isd = 512 � 512� 260K.
We don't combine ResNet with bilinear pooling because
ResNet has2048 channels in the �nal feature map. The
brute force bilinear vector has the dimension of2048 �
2048� 4:2M, which is too large to use in practice.

Compact Bilinear Pooling (CBP): We use Tensor Sketch
with �xed hash functions to approximate bilinear vector on
the feature map of VGG-16 and ResNet-50. Whereas the
original paper [11] only used VGG-16. Typically, compact
bilinear pooling can achieve same performance as full bi-
linear pooling withd � 8192, reducing the original feature
dimension by orders of magnitude. For a fair comparison,
we set the feature dimension in CBP to be the same as our
kernel pooling method in all experiments.

The proposed Kernel Pooling (KP): We evaluate the pro-
posed kernel pooling method in the same context as BP and
CBP. For the activationx at each spatial location on the
feature map, we apply Alg. 1 to get the compact feature
map � (x). Same as BP and CBP, the �nal feature vector
is average pooled across all the spatial locations. The com-
position of the kernel is evaluated with learned coef�cients
via back-propagation. The choice of kernel orderp, feature
dimensiond and will be discussed in Sec. 4.2.

4.1.2 Implementation

Our implementation follows the commonly used practice
in [20, 38, 23, 11]. We have two image input sizes:224�
224and448� 448. For each image input sizeS� S, we �rst
subtract it with the pixel-wise image mean, and we resize
the original image so that its shorter side isS while keeping
its aspect ratio. Then we crop aS � S square image from
the original image. During training, a random square image
is cropped. Both the original crop and its horizontal �ip
are utilized for data augmentation. During inference, the
center image is cropped. We pass the original crop and its
horizontal �ip to the CNN independently. The average of
their classi�cation scores is our �nal classi�cation score.

We follow the post-processing steps in [23, 11] to the
feature vectory before the linear classi�er, because the
experiments show that it improves �ne-grained recogni-
tion performance. We apply element-wise signed square
root: y sign(y)

p
jy j followed by `2 normalization:

y y=kyk on the compact featurey vector.
For the sake of faster convergence and better perfor-

mance, we use pre-trained weights for the neural network.
The intial weights of the convolutional layers are pre-
trained on ImageNet classi�cation dataset, and the initial
weights of the �nal linear classi�er is obtained by training a
logistic regression classi�er on the compact kernel pooling
of pre-trained CNN features. We start the �ne-tuing with
10x smaller learning rate (i.e. 0:001 for VGG and0:01 for
ResNet) and divide it by10 after every30 epochs. We use
a momentum of0:9 and a weight decay of0:0005for VGG
and0:0001for ResNet. The training usually converges at
around50 epochs. The model diverges due to large gradi-
ents sometimes. Therefore, gradient clipping [29] is applied
to ensure all gradients fall in the range between� 1 and+1 .

We use Tensor�ow [1] to implement and train all the
models. On a single NVIDIA Tesla K40 GPU, the for-
ward and backward time of both VGG-16 and ResNet-50
with kernel pooling is about500ms on a448� 448 image
and100ms on a224� 224image. Kernel pooling requires
around50ms withd = 4096 andp = 4 .

4.2. Kernel approximation and con�gurations

This subsection presents the experiments on kernel ap-
proximation error using Alg. 1 on CNN features. Using
VGG-16 trained on ImageNet, we extract conv5 3 feature
maps on the training set of CUB-200-2011 [43], with in-
put size of224 � 224. For each spatial location in the
feature map, the feature is ac = 512 dimensional vec-
tor. Without loss of generality, we use the same feature
pooling dimension�d for each order in kernel pooling (i.e.,
di = �d for i � 2). Therefore, the �nal feature dimension is
d = 1 + c +

P p
i =2

�d = 513 + (p � 1) �d. Fig. 6 shows the
relative approximation error of Gaussian RBF kernel in log
scale, with variant feature pooling dimension�d, orderp and

Figure 6. Relative approximation error for Gaussian RBF kernel
applied on CNN features with variant kernel con�gurations.

 . The relative approximation error between two feature
vectorx andy is given by:

� =
j� (x)> � (y) � K RBF (x ; y)j

KRBF (x ; y)
(12)

We compare kernel pooing with the feature dimension�d
from 50 to 5000with the step of50. Each data point is the
averaged error on100K randomly selected feature pairs.

From Fig. 6, we have the following observations: higher
feature pooling dimension gives better approximation in
general; approximation error also goes down with increas-
ing orderp; plays a key role in the approximation error.
The above �ndings verify the insights from Eqn. 10. In
Fig. 4 we can see that with suf�cient feature dimension and
order as well as a proper , we can achieve close to1%rel-
ative error. In light of this, we use�d = 4096 andp = 4
for all the following experiments. The output vector has a
dimension ofd = 1 + 512 + 3 � 4096 = 12801for VGG,
and1 + 2048 + 3 � 4096 = 14337for ResNet. The hyper-
parameter is set as the reciprocal of the mean of inner
products between feature vectors in the training set to en-
sure that x> y is small on average and we can get a good
kernel approximation.

4.3. Visual recognition

We evaluate on the following visual recognition tasks.
Bird species recognition: We use CUB-200 dataset [43]

for this task. The dataset consists of11; 788 images from
200bird species. Each category has around30 images for
both training and testing.

Car make, model, year classi�cation: The Stanford
Car dataset [19] is used for this task. It has16; 185images
of 196classes with car make, model and year.

Aircraft classi�cation : The �ne-grained aircraft dataset
[27] was �rst introduced in FGComp 2013 challenge, which
contains100aircraft categories and each has100images.

Dataset CNN Original BP[23] CBP[11] KP Others

CUB [43]
VGG-16 [38] 73.1* 84.1 84.3 86.2 82.0 84.1

ResNet-50 [15] 78.4 N/A 81.6 84.7 [18] [16]

Stanford Car [19]
VGG-16 79.8* 91.3 91.2 92.4 92.6 82.7

ResNet-50 84.7 N/A 88.6 91.1 [18] [14]

Aircraft [27]
VGG-16 74.1* 84.1 84.1 86.9 80.7

ResNet-50 79.2 N/A 81.6 85.7 [14]

Food-101 [4]
VGG-16 81.2 82.4 82.4 84.2 50.76

ResNet-50 82.1 N/A 83.2 85.5 [4]

Table 2. Performance comparisons among all baselines, where KP is the proposed kernel pooling method with learned coef�cients. Fol-
lowing the standard experimental setup, we use the input size of448� 448for CUB, Stanford Car and Aircraft datasets except the original
VGG-16 (marked by an asterisk *), which requires a �xed input size of224� 224. For Food-101, we use the input size of224� 224 for
all the baselines.

Figure 7. Images we used for visual recognition. From left to right,
each column contains examples from CUB Bird [43], Stanford Car
[19], Aircraft [27] and Food-101 [4].

Food recognition: For this task we use Food-101 dataset
[4], which is by far the largest publicly available food recog-
nition dataset to the best of our knowledge. This is a large-
scale dataset with101; 000 images and1000 images per
each category. This dataset is challenging because the train-
ing images are noisy and the background is not clean.

Sample images for each task are shown in Fig. 7. Perfor-
mance comparison with all the baselines and state-of-the-art
methods is presented in Tab. 2. The proposed Kernel Pool-
ing with learned coef�cients outperforms all other baselines
by a large margin (around 1-3%) on all the datasets.

4.4. Discussion

In this subsection, we discuss the relative importance of
higher order information for different CNN architectures.
We examined learned kernel coef�cients on CUB dataset
with kernel pooling on VGG and ResNet. We found that
high order feature interactions, especially 2nd and 3rd or-

der, are weighted more in VGG compared with ResNet. In
ResNet, there is no obvious distinction among �rst3 orders.
We believe this is due to the difference of the underlying
network architectures.

One reason might be that in VGG, the non-linear feature
interactions are mainly captured by fully-connected layers.
So removing the fully-connected layers signi�cantly de-
grade the original 1st order feature. Since ResNet only use a
global average pooling layer and has a very large receptive
�eld, the features at different locations of the feature map is
encouraged to represent similar information. Together with
the residual module and a much deeper convolutional archi-
tecture, the output convolution feature could implicitly cap-
ture more information than VGG. In our experiments, we
�nd that the performance of both VGG-16 and ResNet-50
can be improved when the proposed kernel pooling method
is utilized. These experiments verify the effectiveness of
using high-order feature interactions in the context of CNN.

5. Conclusion

In this paper, we have introduced a novel deep ker-
nel pooling method as a high-order representation for vi-
sual recognition. The proposed method captures high-
order and non-linear feature interactions via compact ex-
plicit feature mapping. The approximated representation
is fully differentiable, thus the kernel composition can be
learned together with a CNN in an end-to-end manner. Ex-
tensive experiments demonstrate that deep kernel pooling
method achieves state-of-the-art performance on various
�ne-grained recognition tasks.

Acknowledgements

This work was supported in part by Google Focused Re-
search Award, AWS Cloud Credits for Research, Microsoft
Research Award and a Facebook equipment donation.

